Planning Trajectories on Uneven Terrain using Optimization and Non-Linear time Scaling Techniques

Arun Kumar Singh, K Madhava Krishna and Srikanth Saripalli

Abstract—In this paper we introduce a novel framework of generating trajectories which explicitly satisfies the stability constraints such as no-slip and permanent ground contact on uneven terrain. The main contributions of this paper are: (1). It derives analytical functions depicting the evolution of the vehicle on uneven terrain. These functional descriptions enable us to have a fast evaluation of possible vehicle stability along various directions on the terrain and this information is used to control the shape of the trajectory. (2) It introduces a novel paradigm wherein non-linear time scaling brought about by parametrized exponential functions are used to modify the velocity and acceleration profile of the vehicle so that these satisfy the no-slip and contact constraints. We show that non-linear time scaling manipulates velocity and acceleration profile in a versatile manner and consequently has exceptional utility not only in uneven terrain navigation but also in general in any problem where it is required to change the velocity of the robot while keeping the path unchanged like collision avoidance.

I. INTRODUCTION

Trajectory generation for mobile robot on uneven terrain is a challenging problem because the notion of the vehicle stability governed by the vehicle-terrain interaction has to be included in the planning framework. The primary requirement for calculating stability on uneven terrain is to calculate the position and attitude of the vehicle as it evolves on the terrain. However for a passive suspension car-like vehicle, not all states can be directly controlled. The proposed work gives closed form functional relations which gives the evolution of the vehicle’s passive state in terms of actively controlled states. With this important feature in place, it becomes possible to quickly analyse the velocity and acceleration profiles of the trajectories and check whether they satisfy the stability constraints. This forms the crux of the proposed trajectory generation framework which follows a two-step process.

At the first step the vehicle trajectory between a start and a goal location is generated in the form of parametric functions, without considering the vehicle dynamics. At the second step the vehicle dynamics is considered and a non-linear scaling transformation is proposed for trajectories such that those satisfy the stability constraints. A single parameter called s_{min} is proposed whose existence decides whether a given trajectory can be modified by non-linear scaling transformation to satisfy the stability constraints.

For Trajectories which cannot be modified to satisfy the stability constraints, a trajectory replanning framework is embedded in the planner. The replanning framework builds on the fact that the parametric trajectory generation framework proposed in this paper generates multiple trajectories between a given start and goal location. Moreover as shown in section III the shape of the trajectories can be controlled to pass through stable regions.

II. RELATED WORK

The problem of generating stable trajectories on uneven terrain has been addressed in the past by many researchers. For example in [3,4] the planner produces trajectories considering postural stability. However we have shown in [5] that postural stability measured in terms of variation of pitch and roll angle proves to be inadequate for motion planning purposes. For this reason a new metric was proposed in [5] which measures vehicle stability by noting how well the current velocity and acceleration profile satisfy the no-slip and permanent contact constraint. The idea of using no-slip and permanent contact constraint in the motion planning algorithm has been exploited in the past in [6,7]. However the key novelty of the current proposed work is that it provides vehicle dynamics in 3D. This is in contrast to the point mass [6] and planar model of[7].

The non-linear scaling transformation mentioned in the previous section is an improvement over the constant scaling transformation proposed in [1]. Scaling transformation is an elegant mathematical technique which brings about a transformation in the independent variable of the function affecting its derivative while keeping the path taken by the function unchanged. Due to this mathematical elegance, it finds its way naturally in controlling the vehicle dynamics along a given path. Hence in [1], it was exploited to make the velocity and acceleration profile of the manipulator trajectories satisfy the actuator bounds. In [2] the scaling concept was used to generate stable trajectories for mobile robots on planar uneven terrains. Both [1,2] however use a very simple scaling concept which can be represented in the following form:

$$\frac{du}{dt} = s \Rightarrow u = st$$ \hspace{1cm} (1)

(1) gives a transformation from the variable u to t. It can be seen that t is just a scalar multiple of u and hence derivative of any function $g(u)$ gets scaled by a constant factor s. However there is a critical problem with such transformations which severely limits its use. To understand this further, suppose that some function $g(u)$ shown in
figure 1(a) describes the velocity of a vehicle and we employ the above scaling transformation to modify it. It can be seen that the scaled and unscaled velocity profile does not start at the same point which means that the a constant scaling will bring a discontinuity in the velocity space at the initial point. Another interpretation of this can be that it is only possible to use constant scaling transformation at a planning level and not in a reactive manner while executing a trajectory. For example midway while executing a trajectory, if it is required to change for any reason the velocity and acceleration profile while keeping the path unchanged, constant scaling [1] cannot be used. Non-linear scaling transformation on the other hand can adequately handle situations like these. Obviously the problem of velocity discontinuity does not arise when the initial unscaled velocity profile starts from zero which is exactly what is being used in [1,2]. However on a 3D uneven terrain a trajectory generation framework which requires the vehicle to first de-accelerate to zero velocity is not appropriate.

To get rid of the above problems we propose a scaling transformation of the following form

$$\frac{du}{dt} = k_1 e^{-k_2 u}$$ \hspace{1cm} (2)

We provide in later sections analytical expressions to determine constants k_1 and k_2 which controls the manipulation of velocity and acceleration profile in a far more flexible manner as compared to constant scaling described in (1).

Figure 1(b) gives an overview of the framework proposed in the current work. The parametric trajectory generation module shown in the figure is explained in section III. The derivation of vehicle 3D states and dynamics is provided in section IV. Non-linear time scaling is explained in section V along with trajectory replanning. Simulation results are presented in section VI.

III. PARAMETRIC TRAJECTORY GENERATION

For a passive suspension car-like vehicle only the yaw plane components i.e position x, y and heading α can be controlled. All the other vehicle states are a function of yaw plane components and in later sections we derive the exact functional relationships between them. In this section we derive the yaw plane trajectories as parametric functions like [8,9,10] for a given a start and goal location. Let us being with parametrizing the derivatives of the states as

$$\dot{x}(u) = \sum_{i=1}^{2} a_i \cos(i \omega u) + b_i \sin(i \omega u)$$ \hspace{1cm} (3)

$$\zeta(u) = \tan \alpha = \sum_{i=1}^{2} c_i \cos(i \omega u) + d_i \sin(i \omega u) \Rightarrow \dot{\zeta} = \frac{\dot{\alpha}}{1 + \zeta^2}$$ \hspace{1cm} (4)

By the non-holonomic constraint of the robot we have

$$\dot{y} \cos \alpha - \dot{x} \sin \alpha = 0 \Rightarrow \dot{y} = \dot{x} \tan \alpha = \dot{x} \zeta$$ \hspace{1cm} (5)

Integrating (3) and (5) we get the parametrised trajectory as $\chi(u) = (x(u), y(u))$. The parameters a_i, b_i, c_i, d_i can be obtained by solving the following two point boundary value problem

$$\begin{align*}
x(u_0) &= x_0, y(u_0) = y_0, \zeta(u_0) = \zeta_0 \\
\frac{dx}{dt}(u_0) &= v_1, \frac{d\zeta}{dt}(u_0) = \alpha_1 \\
x(u_f) &= x_f, y(u_f) = y_f, \zeta(u_f) = \zeta_f
\end{align*}$$ \hspace{1cm} (6)

(6) can be solved by putting it as an equality constraint in an optimization routine with the objective function as

$$L(x(u), y(u)) = \int_{u_0}^{u_f} \sqrt{x'^2 + y'^2} \, du$$ \hspace{1cm} (7)

Figure 2 shows a sample output of optimisation routine. The various trajectories between the start and goal point are generated by varying the value of ζ_f in (6). An important thing to note about figure 2 is that there are two sets of trajectories C^+ and C^- approaching the goal from two different sides. The C^+ trajectories corresponds to $\zeta > 0$ and C^- corresponds to $\zeta < 0$. Another important aspect is that the shape of the trajectory can be controlled by the magnitude of ζ with radius of curvature increasing with increasing $|\zeta|$. This feature is utilised to make the trajectory bend towards stable regions of the terrain. We have observed that defining the states as in (3)-(5) has improved the convergence of the optimization problem for large ζ_f as compared to the performance of similar parametric function definitions found in [19]. Since range of tangent function is infinite, ζ_f can attain any real value.
The wheels represents 12 equations in 15 variables. They are
divisible into ground contact points $x_{ci},y_{ci},z_{ci},roll, pitch,
\gamma$ and α coordinate of the vehicle. It is observed that for a
passive/rigid suspension car-like vehicle, tip over instability is
initiated for roll and pitch angle beyond 0.5 radian and the vehicle
cannot remain in contact with the ground. In other words the
variation of the roll and pitch angle along a stable path will be
less than this limit and hence with this fact in mind, we linearise
(9) with respect to β and γ for each wheel as:

\[
x_{ci} = x - \frac{2.5 - i}{[(2.5 - i)]}w \sin \alpha - l_i \gamma \sin \alpha - \delta_h \cos \alpha - l_i \beta \cos \alpha
\]

\[
y_{ci} = y + \frac{2.5 - i}{[(2.5 - i)]}w \cos \alpha - l_i \beta \sin \alpha - \delta_h \sin \alpha + l_i \gamma \cos \alpha
\]

\[
z_{ci} = z + \frac{2.5 - i}{[(2.5 - i)]}w \gamma - l_i + \delta_h \beta
\]

x_{ci}, y_{ci}, z_{ci} satisfy (8) and to explicitly solve for β and γ as
a function of x,y,α it is required that (8) could be represented
as a combination of piecewise linear hyperplanes. In case
when the fitted terrain equation to the DEM is non-linear we
can linearise the terrain equation about the vehicle centre
of mass. This linearisation is justified since any terrain can
be locally represented by a linear plane having a particular
orientation in 3D space. Linearising (8) about the current
chassis centre coordinate gives

\[
z_{ci} = k_3 + k_1(x_{ci} - x) + k_2(y_{ci} - y)
\]

where $k_3 = f(x,y), k_1 = \frac{\partial f}{\partial x}, k_2 = \frac{\partial f}{\partial y}, b = x, c = y, k_2 = \frac{\partial f}{\partial c}, b =
\]

Substituting x_{ci}, y_{ci}, z_{ci} values from (10), (11), and (12),
four equations represented by (13) can be written in the
matrix form as

\[
\begin{bmatrix}
1 & w + p_1 & h & q_1 \\
1 & w + p_2 & -h & q_2 \\
1 & -w + p_3 & -h & q_3 \\
1 & -w + p_4 & h & q_4
\end{bmatrix}
\begin{bmatrix}
z \\
\gamma \\
\beta
\end{bmatrix}
= \begin{bmatrix}
H_1 \\
H_2 \\
H_3 \\
H_4
\end{bmatrix}
\]

(14)

p_i, q_i, H_i are given in the appendix. The coefficient matrix
in (14) can be pseudo-inverted to solve for z, γ, β, γ. However
if the suspension travel length is small which essentially means
that $p_1 = p_2 = p_3 = p_4 = p$, and $q_1 = q_2 = q_3 = q_4 = q$, with
small matrix manipulation (14) can be reduced to

\[
\begin{bmatrix}
0 & 2w & 0 \\
0 & 0 & -2h \\
1 & -w & p + h & q
\end{bmatrix}
\begin{bmatrix}
z \\
\gamma \\
\beta
\end{bmatrix}
= \begin{bmatrix}
H_2 - H_3 \\
H_3 - H_4 \\
H_4
\end{bmatrix}
\]

(15)

Inverting coefficient matrix in (15) gives z, γ, β as analytical
functions of x, y, α. Figure 4 shows that linearised posture
determination model agrees well with that obtained from
solving (9) in the non-linear form. These relations and their
derivatives are imperative for obtaining 3D dynamics of the
robot and estimating stable velocities and accelerations.

(10)-(12) will allow us to have wheel ground contact points
also as a function of x, y and α. Wheel ground contact points
location are important because they decide contact surface
unit normals $n_{xzi}, n_{yzi}, n_{zzi}$ and with the help of that the
traction unit vectors can be calculated. The details of these derivations can be found in [5]. The equations of motion of the vehicle can be presented in the form similar to [5,17].

\[
A \ast C = D
\]

where \(C = \begin{bmatrix} T_i \ N_i \end{bmatrix}_{2n \times 1}^T D = \begin{bmatrix} \vec{T}' \ \vec{\Omega}' \end{bmatrix}_{6 \times 1}^T \]

\(T_i, N_i, \vec{T}', \vec{\Omega}'\) are the traction, normal forces, linear and angular accelerations respectively. \(n\) is the number of wheels of the vehicle. The elements of \(A_{6 \times 2n}\) matrix depends on vehicle posture, geometry and terrain dependent parameters like surface contact normals and traction unit vectors. It is to be noted that because of the derivation presented from (10-15) matrix \(A\) can also be known in closed form as a function of \(x,y,\alpha\). Ideally if matrix \(A\) could be inverted symbolically, we could have analytical functional description of the variation of \(T_i, N_i\) with respect to \(\vec{T}', \vec{\Omega}'\) and in theory we could have gradient descent based algorithm to generate a one shot stable path.

Vehicles operating on uneven terrain generally have 4-8 wheels which makes \(A\) under-constrained and have to be pseudo-inverted. Some algorithms like [18] computes symbolic pseudo inverse for small matrices having one or two independent variables. However pseudo-inverting matrix \(A\), whose dimension will increase with the number of wheels can turn into a complex problem. It should be noted that this problem is not unique to the framework proposed in this paper but is fundamental with modelling vehicle dynamics in 3D and relating traction and normal forces to velocity and acceleration in closed form. Hindered by this critical problem, a two step process of trajectory generation stated earlier in section I is followed which utilises the fact that it is relatively easy to compute the pseudo inverse numerically at any point on the terrain and by doing so we get

\[
T_i = a_{i1}(ma_x) + a_{i2}(ma_y) + a_{i3}(mg + ma_z) + a_{i4}(I_{xx}\dot{\Omega}_x) + a_{i5}(I_{yy}\dot{\Omega}_y) + a_{i6}(I_{zz}\dot{\Omega}_z)
\]

\(\forall \ i = \{1,2,3,4\}, \forall \ j = \{5,6,7,8\}. m\) is the mass of the vehicle and \(g\) is acceleration due to gravity. \(a_{i1},a_{i3},a_{i2},a_{i1},a_{i3},a_{i4},a_{i5},a_{i6}\) are the elements of the pseudo inverse matrix of \(A\). A feasible set of linear and angular accelerations is determined by the elements of the pseudo-inverse matrix and is defined as one which satisfies the following constraints.

\[
N_i > 0
\]

\[
||T_i|| < \rho N_i
\]

\(\rho\) is the coefficient of friction in (20). By noting (17) and (18) it can be seen that configuration \(x, y, \alpha\) which lead to \(a_{i3} > 0\) are promising candidate for satisfying (19) and (20) (since this coefficient decides the contribution of the weight). These coefficients can be rapidly evaluated for some look ahead distance along various directions and this information is fed to the trajectory generation described in the previous section to control the shape of the trajectory between start and a goal location.

Once a parametric trajectory has been obtained it is fed to (17) and (18) and check for the satisfaction of (19) and (20). Let \(s_{min}\) denote the minimum magnitude by which the velocity and acceleration profile of the trajectory needs to be scaled so that they satisfy (19) and (20). Unfortunately not all trajectories can be scaled to satisfy (19) and (20) and this fact gives rise to a novel definition of stability.

Definition: A Trajectory can be modified to satisfy the (19) and (20) if at all points along the trajectory a \(s_{min}\) could be found. Those trajectories will be referred to as stable.

Trajectories for which \(s_{min}\) could be found at every point, a transformation is brought in the parametric definition such that the velocity and acceleration profile is scaled by the amount suggested by \(s_{min}\). This is explained in detail in the next section.

V. NON-LINEAR TIME SCAリング

A transformation from \(u\) to \(t\) in the independent variable of the function, following the definition of (2) brings about the following change in the derivative of the states.

\[
\hat{x}(t) = \hat{x}(u) \frac{du}{dt}, \hat{x}(t) = (\frac{du}{dt})^2 \hat{x}(u) + \hat{x}(u) \frac{du}{dt^2}
\]

The changes in the derivatives of \(y, \alpha\) follow the same form as (21). If \(\frac{du}{dt} < 1\), the velocity and acceleration profile is scaled down and vice versa for \(> 1\). The scaling function \(\frac{du}{dt}\) should be such that the following inequality is satisfied.

\[
\frac{du}{dt} \leq s_{min}(u), if, s_{min}(u) \leq 1
\]

\[
\frac{du}{dt} \geq s_{min}(u), if, s_{min}(u) \geq 1
\]
hand \(s_{\text{min}} \) exists at all points and hence is stable. Figure 5(c) shows the evolution of the vehicle on the uneven terrain. Corresponding to the \(s_{\text{min}} \) profile obtained for trajectory 4, two scaling functions shown in figure 5(d) were created. The two scaling functions are defined in the following manner.

Scaling function 1

\[
\frac{du}{dt} = \begin{cases}
 e^{-1.42u}, & 0 \leq u \leq 2 \\
 \frac{1}{17}, & 2 \leq u \leq 10
\end{cases}
\]

Scaling function 2

\[
\frac{du}{dt} = \begin{cases}
 e^{-1.42u}, & 0 \leq u \leq 2 \\
 \frac{1}{17}, & 2 \leq u \leq 3.1 \\
 0.0011e^{1.27u}, & 3.1 \leq u \leq 4.6 \\
 31.61e^{-0.95u}, & 4.6 \leq u \leq 6.6 \\
 \frac{1}{12u}, & 6.6 \leq u \leq 8.1 \\
 6.4110^{-6}e^{1.12u}, & 8.1 \leq u \leq 10
\end{cases}
\]

To understand how these scaling functions were created note from figure 5(d) that \(s_{\text{min}} = 1, u = 0, s_{\text{min}} = 0.059, u = 2 \). To satisfy these requirements and also (22), we use equation (23) to calculate \(k_1 \) and \(k_2 \) as 1 and -1.42 respectively. From that point onwards a constant scaling function can be used i.e \(\frac{du}{dt} = 0.059 \) satisfies (22) for the concerned \(s_{\text{min}} \) profile. Figure 5(f) shows the velocity profile with scaling function 1. By comparing it with the unscaled velocity profile shown in figure 5(e), it can be seen that the time required to execute the trajectory has increased from 10s to 147.3s \((u = (0, 10) \rightarrow t = (0, 147.3))\).

A more optimum velocity profile can be obtained if multiple exponential functions are used as in scaling function 2. As can be seen from figure 5(d), at intervals where \(s_{\text{min}} = 1(3.1 \leq u \leq 6.6, 8.1 \leq u \leq 10) \), the scaling function is allowed to increase. As a direct consequence of the magnitude of the velocity profile becomes higher as can be seen from figure 5(g). It is to be noted that the time required to execute the trajectory has decreased from 147.3s to 96.3s. This non-linear scaling provides a greater level of flexibility in modifying the velocity and acceleration profile as compared to the constant scaling [1]. It is also to be noted that the unscaled velocity profile (figure 5(e)) starts from non-zero velocity and the scaled velocity profiles (figure 5(f) and figure 5(g)) also starts from the same point. Hence unlike constant scaling [1], non-linear scaling proposed here does not result in any discontinuity in the velocity space. Figure 5(h) and figure 5(i) shows the satisfaction of permanent contact and no-slip constraint for the velocity and acceleration profile obtained with scaling function 2.

B. Trajectory Replanning

In this example we show how unstable portions of the trajectory is re-planned while keeping the stable portions intact. Figure 6(a) shows an initial planned path \((\chi(u))\) for which at some places no \(s_{\text{min}} \) exist (figure 6(b)). The portion in black represents the unstable portion of the trajectory while the portion in red denotes the stable portion of the trajectory. So keeping the stable portion intact a new trajectory \((\chi_r(u))\) is planned (shown in blue). So the final
trajectory from start to the goal will be a concatenation of $\chi(u)$ and $\chi_r(u)$. Let it be called as $\chi_c(u)$. Figure 6(b) shows the plot of s_{min} for the combined trajectory and the scaling function constructed corresponding to it. The scaling function is defined in the following manner:

$$\frac{du}{dt} = \begin{cases}
1, & 0 \leq u \leq 5 \\
468.71e^{-1.23u}, & 5 \leq u \leq 7.3 \\
\frac{1}{7}, & 7.3 \leq u \leq 10
\end{cases} \quad (26)$$

It can be noted from this definition that for the first 5 sec. the $\frac{du}{dt}$ is constant at 1 which means that for the first 5 sec. the scaled and unscaled velocity profile are the same. This can be confirmed from figure 6(e). This shows how velocity and acceleration profile can be scaled down midway while executing a trajectory. This is a very important feature of the proposed non-linear scaling method which was not possible with constant scaling [1]. Figure 6(d) shows the scaled velocity profile and figure 6(f) and figure 6(g) confirms the satisfaction of permanent contact and no-slip constraint with the scaled velocity and acceleration profile.

C. Comparison of quality of parametric trajectories with that obtained from sampling based motion planners

The computational gain of parametric trajectory generation over sampling based motion planners are well known but the former can possibly introduce sub-optimality in the quality of the path. Since the addressed problem is of uneven terrain trajectory generation, quality of the path is measured by
Fig. 6. (a) Trajectory Re-planning. (b) First half shows s_{min} variation along initial trajectory $\chi(u)$. Second half shows improvement of s_{min} along the combined trajectory $\chi_c(u)$. (c) Unscaled Velocity Profile of $\chi_c(u)$. (d) Scaled velocity profile of $\chi_c(u)$. (e) Confirmation that for the first 5 seconds the scaled and unscaled velocity profile are the same. This shows it is possible to apply non-linear scaling transformation midway while executing a trajectory. (f) Satisfaction of (19). (g) Satisfaction of (20). (h) Vehicle’s evolution along $\chi_c(u)$.

the stability metric FAC proposed in [5]. FAC denotes the measure of the space of feasible accelerations for the current velocity profile which satisfies (19) and (20). It was shown to be a better metric than the more commonly used Tip-Over metric [20]. Table 1 summarises the FAC comparison for five terrains averaged over 20 different paths with different start and goal location. Optimization based trajectory have on an average FAC 0.9 times that of sampling based planner [20]. Table 1 summarises the FAC comparison for five terrains averaged over 20 different paths with different start and goal location. Optimization based trajectory have on an average FAC 0.9 times that of sampling based planner involving exhaustive search.

Figure 7 shows the number of iterations required for optimization to converge, averaged for 200 paths with particular ζ_f and different start and goal location. Arbitrary initial guess was given to the optimization routine and the tolerance for the error was kept as 10^{-6}. The number of iterations taken are comparable to that reported in [3]. For every path produced by the optimization, s_{min} needs to be evaluated along the points on the trajectory. However resolution of the search space for s_{min} is not critical and the conclusion about its existence can be made by evaluating 10 to 20 scale factors. In our case we evaluate 20 values in the interval (1,80) as possible s_{min} and if none of them leads to the satisfaction of (19) and (20 at any particular point, we conclude that s_{min} does not exist for that point. The optimization then produces a new trajectory through the replanning framework and the process is repeated till a completely stable trajectory from start to the goal has been constructed. The total time taken for
each path comes out to be 3-5 seconds while for a sampling based planner it is usually around 30 min, primarily because the dimensional of the search space will be 2 (linear and angular acceleration) and the resolution of the search space will have a telling effect on the output. Moreover for each point in the linear and angular acceleration search space the constraints (19) and (20) would have to be evaluated and for all those satisfying them, vehicle forward evolution would have to be computed through numerical integration. The time taken by the optimization and for the s_{min} search can be reduced significantly by using C++ platform or by parallelizing the computation in a GPU.

Table I

<table>
<thead>
<tr>
<th>Terrain</th>
<th>FAC (sampling)</th>
<th>FAC (optimization)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrain 1</td>
<td>0.67</td>
<td>0.56</td>
</tr>
<tr>
<td>Terrain 2</td>
<td>0.62</td>
<td>0.50</td>
</tr>
<tr>
<td>Terrain 3</td>
<td>0.59</td>
<td>0.53</td>
</tr>
<tr>
<td>Terrain 4</td>
<td>0.75</td>
<td>0.67</td>
</tr>
<tr>
<td>Terrain 5</td>
<td>0.81</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Fig. 7. Number of Iterations required for optimization to converge plotted as a function of ζ.

VII. APPENDIX

\[p_i = k_1 l_i \sin \alpha - k_2 l_i \cos \alpha \]
(27)

\[q_i = k_1 l_i \cos \alpha + k_2 l_i \sin \alpha \]
(28)

\[H_1 = k_1 x - k_1 w \sin \alpha - k_1 h \cos \alpha \]
(29)

\[+ k_2 y - k_2 h \sin \alpha + k_2 w \cos \alpha + k_3 + l_1 \]
(30)

\[H_2 = k_1 x + w (k_2 \cos \alpha - k_1 \sin \alpha) \]
(31)

\[+ h (k_1 \cos \alpha + k_2 \sin \alpha) + k_3 + l_2 + k_2 y \]
(32)

VIII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We presented a novel framework for trajectory generation capable of handling strict stability constraints. A rigorous analysis of the challenges and requirement for uneven terrain trajectory generation was presented. A relatively simple framework was proposed which owes great deal of its simplicity to the fact that it is possible to obtain trajectories without worrying about complicated vehicle dynamic constraints and then apply non-linear scaling transformation to satisfy the stability constraints. Trajectory replanning was embedded in the framework for trajectories which cannot be modified to satisfy the stability constraints.

B. Future Work

The performance of the planner with incomplete information about the terrain and vehicle dynamics is currently studied. A probabilistic framework which depends upon terrain information and vehicle’s 3D states can be developed to handle noises in terrain and vehicle dynamics information. Implementing the planner on outdoor robot platform is also part of the future work.

REFERENCES

